
Contents

1 Introduction to ARM Bit-Packed QC 1

2 Notes on ARM QC Tests 2

3 Introduction to Bit-Packing 2

4 Reading Individual QC Test Results 3

5 Reading Multiple QC Test Results using Masks 4

6 Writing QC Tests as Bit-Packed Integers 5

7 Advanced Topics 6

8 Using QC Fields in C 7

9 Using QC Fields in Fortran 9

10 Using QC Fields in IDL 11

11 Other languages 16

1 Introduction to ARM Bit-Packed QC

In recent years, the ARM program has worked to add standardized quality control (QC)
information to ARM Value Added Products (VAPs) to aid users in utilizing the VAP data
and to make it easier for the Data Quality O�ce to assess VAPs. The fundamental idea
behind the standardized QC information is that for each variable a series of QC tests are
performed and the results of these tests are binary: either the data passes the test or fails it.
To capture the results of these tests base level (.c1.) VAP �les have bit-packed QC �elds, in
which each bit contains information about a particular QC test.

In this document, we describe how to use ARM bit-packed QC �elds. We will explain
the concepts behind bit-packing and give examples in several programming languages of how
to both read and write standard ARM QC data �elds. We will also provide a theoretical
background on bit-packing which will allow you to extend these concepts to other languages
if needed. The index at the top of the document will allow you to easily navigate to topics
of interest and actual code examples.

Summary QC Data Files

To make the VAP �les easier to use for the standard data user, along with the base .c1
level �les, summary (.s1) �les are also created for many VAPs. In the .s1 �les, the results
of all of the individual QC tests performed on a variable have been summarized. From the
.s1 �les, you can obtain information about the overall quality of the data, but do not have

1

information about which particular tests failed. The QC �elds in the .s1 data can have one
of four possible values:

� 0 = Good: Data exists and passed all QC tests.

� 1 = Indeterminate: Data failed at least one "Indeterminate" QC test, but no "Bad"
tests.

� 2 = Bad: Data failed at least one "Bad" QC test.

� 3 = Missing: Data is missing.

Thus, if you are only interested in the overall data quality, and do not need information
on the individual QC tests, we recommend that you use the .s1 summary VAP �les; in most
cases you will want to accept all values with qc_field <= 1.

2 Notes on ARM QC Tests

Throughout this document we will use the terms "data �eld" and "QC �eld"; the former
is the variable in the netCDF �le that stores the actual data we are interested in (e.g.
"temperature"), while the latter is the associated �eld that gives the QC information about
that data (e.g. "qc_temperature"). For further information see the documentation on the
standard ARM QC methodology.

The fundamental idea behind the ARM QC tests is that they are constructed to be
binary: either the data passes the test or fails it. There is no way to store continuous state
information in a standard ARM QC �eld; if you want to give a continuous metric (e.g. "%
of potential data points used"), you will have to use Auxilliary QC �elds (aqc_�elds), which
are not required to be bit-packed or even integer values.

Not all QC tests are designed to �ag the data as "Bad"; some tests are designed simply
to identify unusual circumstances in the data, or to pass information to the end user. For
example, we might use one of the bits to indicate that the data was interpolated rather than
directly measured. For these types of QC tests, we �ag the data as "Indeterminate", and
most endusers will want to use such data in their analyses.

In the ARM netCDF �le, each QC �eld must have a number of attributes named
bit_N _assessment, which describe whether the test represented by bit N is fatal or not for
the data �eld. The possible values of the assessment are "Bad" and "Indeterminate", and
provide a way to determine which bits of the QC �eld you would like to use to exclude data
from your analysis.

3 Introduction to Bit-Packing

All standard ARM QC �elds are bit-packed integers ; this means that each bit (with a value of
either "1" or "0") in the integer value contains QC information about a particular QC test.
This method allows us to provide multiple QC states for a given datum in one number, but
it does make the actual combined QC state of a �eld a little hard to discern for us humans.

2

For example, the �rst bit in the QC integer may represent the "valid_min" test; if that
bit has a value of "1", that means that the data �eld has failed that test - i.e., it is below
the minimum value allowed for that �eld. If that bit has a value of "0", then the data �eld
passed that test. Thus, non-zero bits mean something unusual or noteworthy has happened
in the data �eld.

As you know, you can represent any integer as a series of bits (i.e. as a binary number);
formally, we can say that:

N =
32∑

b=1

wb 2b−1

for the 32 bit integer N, where b are the bits of that integer and the values w are either
0 or 1 for each bit b. This decomposition allows us to store the results of up to 32 QC tests
in a single 32-bit integer.

As an example, the number 109 in 32-bit notation is:

0000 0000 0000 0000 0000 0000 0110 1101

By convention, the lowest to highest bits are read right to left, just like you would read
any binary number. This is true regardless of the bit ordering in your particular machine.
The methods listed in this document will still hold whether you are on a big-endian or
little-endian machine.

We say that for the integer 109, bits 1, 3, 4, 6, and 7 are set, which means they have the
value of "1". In QC terms, that means this particular data �eld failed tests 1, 3, 4, 6, and
7, and passed all the other tests we applied.

The basic tools we use to work with bit-packed integers are the bitwise operators for your
programming language. A good �rst step would be to look up "bitwise" in your favorite
language reference if you need help understanding the rest of this document.

4 Reading Individual QC Test Results

If all you are interested in is whether the data �eld failed any QC test at all, then you can
simply check whether the QC �eld has a value of exactly zero or not. We know that if none
of the bits have been set (i.e. no QC test was failed), then the QC �eld will have a value of
zero; thus

qc_val != 0

is all we need to �nd out if some test or another has failed. This is, however, almost
certainly not what you want to do; usually, you will still want to use data that fails at least
some of the "Indeterminate" tests.

Therefore, you will need a way to determine when the data fails some subset of the
available tests; to do that, you will have to use your language's bitwise AND operator.

The bitwise AND checks the corresponding bits in two numbers, and returns "1" in that
bit location if both bits are set and "0" if either (or both) bits are not set. For example, 109
AND 43 = 41, as we can see in this diagram (using only the lowest 8 bits for each number):

3

109: 0110 1101

43: 0010 1011

----------------- AND

41: 0010 1001

To determine if one particular bit is set, you need to bitwise AND the QC value with
the integer corresponding to that lone "clean" bit - i.e. the integer that has that bit set to
"1" and all other bits set to "0". You can, of course, hard code this clean bit integer if you
want; the integer value for bit 5 will always be "16". But you can also build that clean bit
integer using the bit shift (speci�cally, the left shift) operator.

Shifting a bit leftwards does exactly what it sounds like - it moves it one position to the
left in the standard bit representation, which makes the value larger. In fact, left shifting any
integer by one position is exactly the same thing as multiplying by 2; you could build a clean
bit integer by multiplying the value "1" by 2 N-1 times, or by taking the exponential 2�(N-1).
But bit shifting is orders of magnitude faster than those operations; bitwise operations are,
in general, amongst the fastest operations on any computer.

To get a clean bit representation of bit N, you need to shift the integer "1" left by N-1
positions; to get to "16", you left shift 1 four times:

1: 0000 0001

----------------- left shift 4 positions

16: 0001 0000

Once you have the clean bit corresponding to your test, a simple bitwise AND will tell
you whether that bit is set in your QC value. The following pseudocode illustrates this:

bit5 = left_shift(1,5-1)

if ((qc_field AND bit5) NE 0) {

print "Bit 5 is set in qc_field"

}

5 Reading Multiple QC Test Results using Masks

The previous example checked just one bit; we use something like that when we are interested
in �nding if the data �eld passed one particular test, regardless of how it faired in the other
tests. But the power of bit-packing lies in the fact that we can store data about all the tests
at once - and that we can check all the tests we are interested in at once.

To do that we have to build a mask - an integer with the interesting bits set to 1 and
all the other bits set to 0. Then a simple bitwise AND between our QC value and the mask
tells whether any of tests fail.

For example, if we want to screen out data that fail tests 1, 2, 4, and 7, we would set our
mask to 75:

75: 0100 1011

4

Then, a simple AND with the mask tells us what we want to know:

mask=75;

if ((qc_field AND mask) NE 0) {

print "qc_field has failed test 1, 2, 4, and/or 7!"

}

Of course, you usually don't want to hardcode the mask to a speci�c integer, which
won't work if the order of the tests change or if you try to reuse your code for other data.
Instead, you should build a mask inside your code, by setting each bit that corresponds to
an important test. This is exactly the same thing you would do to write out your own values
to a QC �eld, and is the subject of section �6.

Using Masks to Find Good Data

Obviously, you can use a QC mask to �nd data that passes all the tests just as easily as you
can to �nd data that fails one or more tests. In this case, you are looking for masked values
that equal 0:

if ((qc_field AND mask) EQ 0) {

// we can use this data!

use_data_value(data);

}

6 Writing QC Tests as Bit-Packed Integers

Now that you know how to unpack the bits in a QC value, it is time to learn how to pack
them in the �rst place; you will need to do this if you are going to write out your own QC
�elds (a requirement for new ARM datastreams), or if you are going to build a mask to
compare your input QC values against.

The tool that does this is the bitwise OR, which checks the corresponding bits in two
numbers and returns "1" in that bit location if either of the bits are set and "0" if both bits
are not set. Therefore, 109 OR 43= 111:

109: 0110 1101

43: 0010 1011

----------------- OR

111: 0110 1111

Coupled with an assignment operation, the bitwise OR can be used to set bits in an
integer. Note that the OR is not a toggle; it will set the bit to 1 regardless of what it was
before.

In section �3, above, we describe how any integer can be decomposed into powers of 2.
From this one might infer that if you are building an integer up from individual bits, you
can actually add the clean bit integers as an alternative to OR-ing them together. This can

5

lead to some interesting tricks, but is a very dangerous habit to get into. Addition will
not work as a substitute for the bitwise OR between any two generic integers, and if you
used it for (e.g.) merging two masks together the results would be catastrophic.

7 Advanced Topics

Signed vs. Unsigned Integers

As a rule, it would be best to use unsigned integers to hold the qc values, so that you have
all 32 bits available for tests. For signed integers, the leftmost bit is reserved to indicate sign;
furthermore, negative numbers are usually represented in 2s complement format, so you can
get some pretty weird looking values. For example, the signed integer:

1000 0000 0000 0000 0000 0000 0000 0001

is not -1, as you might expect, but -2147483647 (-(2�32-1)).
What this means is that if you actually have 32 QC tests, bitwise AND comparisons

with signed integers might return an integer that is less than 0. Thus, you should make sure
to use "not equals" rather than "greater than" zero when you check the return value of a
bitwise AND, or make sure you use unsigned integers all the time.

Clearing Bits

There are a few circumstances when you might want to clear a bit, i.e. set the value to 0.
For example, you might want to remove a test from a mask or change a QC value based on
further considerations. It is also sometimes easier to build a mask by clearing bits you aren't
interested in than setting ones you are.

To do this we use the bitwise NOT (also called the bitwise complement), which �ips the
value of every bit in an integer. If you take the NOT of a clean bit, you end up with a mask
that has every other bit set to 1, and only that bit set to 0. You can then bitwise AND this
with your QC value, and the result will have that bit set to 0 and all other bits untouched.

For example (again, using the lowest 8 bits for readability), let us consider bit 5, which
gives an integer value of 16:

16: 0001 0000

NOT 16: 1110 1111

If we want to clear bit 5 from a QC value 59, we take the value 59 AND (NOT 16) and
get the value 43:

59: 0011 1011

NOT 16: 1110 1111

----------------- AND

43: 0010 1011

Note that only the value of bit 5 has changed. It is possible to clear multiple bits at once
using a mask, which is left as an exercise for the reader.

6

8 Using QC Fields in C

Reading QC Fields

In C, the bitwise AND operator is a single & and the left shift operator is <<. Thus, to �nd
if a given QC �eld has failed test N, you need to do is something like this:

int N, qc_val;

...

if (qc_val & (1<<(N-1)) {

printf("QC failed test %d\n", N);

}

You will probably want to hide this bitwise operation in a function or macro; for example:

#define qc_check(qc,bit) ((qc) & (1<<((bit)-1)))

will allow you to say:

if (qc_check(qc_val,N)) {

printf("QC failed test %d again!\n", N);

}

There is a language-dependent subtlety hidden in this example. The value returned from
the bitwise & operation is not either 1 or 0; it returns a full integer value with each bit set
or not. In other words, the possible values of

qc_val & 16

are either 0 or 16, depending on whether bit 5 was set in qc_val or not. In C, you
can treat any non-zero integer value as a logical "TRUE", while the integer value of 0 is
"FALSE". That's why the above conditional works - but it would not work in a language
that had a true logical data type (like Fortran). To be completely rigorous, therefore, you
should really check to see whether the value of the bitwise & is di�erent than zero:

#define qc_check(qc,bit) (((qc) & (1<<(bit-1))) != 0)

Building a QC Mask and Setting Output QC Values

In C, the bitwise OR operation is a single |; we often use it in conjunction with assignment
as |= (similar to the way we use += to add and assign in one operation).

To build a mask that checks tests 1, 2, 4, and 7, we would do something like this:

int mask;

...

7

mask=0; // Important to set all bits to 0 to start

mask |= (1<<(1-1));

mask |= (1<<(2-1));

mask |= (1<<(4-1));

mask |= (1<<(7-1));

if ((qc_val & mask) != 0) {

printf("QC failed an important test!\n");

}

Again, it is probably easier to build a function or macro to assign bits:

#define qc_set(qc,bit) ((qc) |= (1<<((bit)-1)))

...

qc_set(mask,1);

qc_set(mask,2);

qc_set(mask,4);

qc_set(mask,7);

....

Setting an output QC value uses the exact same method:

int output_qc=0;

for (N=1;N<ntests;N++) {

if (fails_test(data,N)) {

printf("Data failed test %d\n", N);

qc_set(output_qc,N); // or output_qc |= (1<<(N-1))

}

}

Clearing QC Bits

The NOT operator in C is �:

#define qc_clear(qc,bit) ((qc) &= (~(1<<((bit)-1))))

A quick way to build a mask that includes all possible tests is to take the bitwise com-
plement of the integer 0. For example, this mask ignores test 3 and includes all other tests:

mask = (~0);

qc_clear(mask, 3);

8

QC Tests for VAPS

In general, the QC tests occur in the middle of your VAP code, as you calculate a value and
then check to see if is reasonable. For this reason, you usually want to put the bits associated
with each test in a variable, to make sure you keep them straight and to help the readability
of your code. For example:

static int QC_VALID_MIN=1;

static int QC_VALID_MAX=2;

static int QC_INTERPOLATE=3;

...

val[i]=calculate_value(data, &interpolated);

if (val[i] < valid_min) {

qc_set(qc_val[i], QC_VALID_MIN);

}

if (val[i] > valid_min) {

qc_set(qc_val[i], QC_VALID_MAX);

}

if (interpolated) {

qc_set(qc_val[i], QC_INTERPOLATE);

}

9 Using QC Fields in Fortran

Reading QC Fields

In Fortran 90 (I'm not sure about earlier versions), you do the same thing we did in C: left
shift the integer "1" N-1 positions and do a bitwise AND with your qc value. The Fortran
operators for this are IAND and ISHFT:

if (IAND(qc_val,ISHFT(1,N-1)) .ne. 0) then

write(*,*) 'Bit ', N, ' is set in qc_val

endif

However, for comparisons with clean bit integers, Fortran actually has an simpler logical
function called BTEST:

if (BTEST(qc_val,N-1)) then

write(*,*) 'Bit ', N, ' is set in qc_val

endif

BTEST takes as its second argument the bit position of the clean bit integer we want,
rather than the integer itself. (Note that, unlike most things in Fortran, the bit position
is 0-o�set, so you still have use bit position N-1 when you mean bit N.) For QC purposes,
BTEST is asking exactly the same question as we are: is bit N set in our QC value?

9

Using Masks in Fortran

Unfortunately, the BTEST function will not work with a mask, as it is designed to check one
bit at a time. Therefore, you will have to use bitwise AND explicitly on your qc_val and
the mask:

if (IAND(qc_val,mask) .ne. 0) then

write(*,*) 'QC_val failed some important test'

endif

Building a QC Mask and Setting Output QC Values

In Fortran, the bitwise OR is called IOR; there is also a function called IBSET which sets the
bits explicitly without having to do any left shifting. Thus, to build our mask for tests 1, 2,
4, and 7, either one of these examples will work:

! easy way

mask=0

mask=IBSET(mask,1-1)

mask=IBSET(mask,2-1)

mask=IBSET(mask,4-1)

mask=IBSET(mask,7-1)

! now do it the hard way, with bitwise ors

omask=0

omask=IOR(omask,ISHFT(1,1-1))

omask=IOR(omask,ISHFT(1,2-1))

omask=IOR(omask,ISHFT(1,4-1))

omask=IOR(omask,ISHFT(1,7-1))

if (IAND(qc_val,mask) .ne. 0) {

write(*,*) "qc_val failed an important test"

}

Again, building an output QC value is similar:

output_qc=0;

do N=1,ntests

if (failed_test(data,N)) then

write(*,*) "data failed test", N

output_qc=IBSET(output_qc,N-1)

endif

enddo

10

Clearing QC Bits

The Fortran bitwise complement is called NOT, but there is also an IBCLR function which
clears a bit directly in much the same way as IBSET:

mask=IAND(mask,NOT(ISHFT(1,bit-1)))

mask=IBCLR(mask,bit-1) ! exactly the same thing

10 Using QC Fields in IDL

Reading QC �elds

The IDL bitwise AND is called AND; the bit shift operator is called ISHFT. Thus, IDL code
will look like this:

if ((qc_val AND ISHFT(1UL,N-1)) ne 0) then begin

print, "Bit ", N, " is set in qc_val"

endif

Note once again that the output of the bitwise AND is not a logical but an integer, and
thus you must do the ne 0 comparison to use it in a conditional. (Also, make sure you have
enclosed the bitwise AND in parentheses before doing the comparison, as the ne operator
binds tighter than AND, for some crazy reason.)

Building a QC Mask and Setting Output QC Values

The IDL bitwise OR is called OR, and so we could build our mask like this:

mask=0UL

mask=mask OR ISHFT(1UL,1-1)

mask=mask OR ISHFT(1UL,4-1)

...

Here is a function that will build a mask for you; the argument bits is an IDL integer
array with the (1-o�set) positions of the bits you want set:

FUNCTION build_mask,bits

mask=0UL

FOR i=0,n_elements(bits)-1 DO BEGIN

mask = (mask OR ishft(1UL,bits[i]-1))

ENDFOR

return, mask

END

(but see section �10, below, for a slicker way to do this). You would call this function
like this:

11

x=[1,2,4,7]

mask=build_mask(x)

if ((qc_val AND mask) ne 0) then begin

print, "Qc_val failed tests 1, 2, 4, and/or 7!"

endif

Clearing QC Bits

The IDL bitwise complement is called NOT:

mask = mask AND (NOT ishft(1UL,bit-1))

will set bit in mask to "0".

32 Bit Integers in IDL

Most languages have a default integer type of at least 32 bits, but for IDL "integer" means
"16-bit signed integer". Thus, you should get in the habit of casting all the integers used for
QC values and masks as "unsigned long", which give you the full 32 bits:

mask=0UL

...

clean=ISHFT(1UL,bit-1)

Most IDL functions and operations return a value of the same type as the most rigid
argument, so adding or OR-ing integers of any type to mask=0UL will return a type of
"ulong", and the variable clean above is also an "ulong". But you have to be careful; some
functions return a di�erent type (e.g. total returns a �oating point number regardless of
the type of its inputs), so you have to explicitly cast it back using ULONG():

mask=ULONG(total(ISHFT(1UL,bits-1)))

In later versions of IDL there is even a 64 bit unsigned integer type (called "unsigned
long long"), which may be prudent to use if we ever have 32 or more QC Tests to perform:

mask=ULONG64(total(ISHFT(1ULL,bits-1)))

Vector Processing and Programming Hints

The bitwise operations in IDL are vectorized, which means you use them to avoid looping
and can easily construct a logical vector that screens out the bad data from your arrays,
using the where command. For example:

12

fid = ncdf_open(file)

ncdf_varget, fid, 'time', time

ncdf_varget, fid, 'temperature', temp

ncdf_varget, fid, 'qc_temperature', qc_temp

...

x=[1,2,3,5] ! will want to scan bit_N_assessment attributes

! in a real application

mask=build_mask(x)

good_index=where((qc_temp AND mask) eq 0, ng)

bad_index=where((qc_temp AND mask) ne 0, nb)

!! now use only the good points

plot, time[good_index], temp[good_index]

mean_daily_temp=mean(time[good_index])

print, "The percentage of good points in this file is", float(ng)/float(ng+nb)

...

The build_mask function given in section �10 can actually be simpli�ed by removing the
loop in favor of vector operations:

FUNCTION build_mask,bits

return, ulong(total(ishft(1UL,bits-1)))

END

(Note the use of total to sum the clean bit integers; we have warned you about this, so
make sure you know what you are doing before you try a stunt like this.)

If you had a string array qc_assess that held the QC assessment string "Bad" or "In-
determinate" in each slot (i.e. qc_assess[2] would tell us whether QC Test 3 was "Bad"
or "Indeterminate"), then:

mask=ulong(total(ishft(1UL,where(qc_assess eq "Bad"))))

would build our QC mask. (Note that we do not have a "-1" on the second argument
to ishft, as IDL arrays are already 0-o�set). This works even if none of the assessments
is "Bad" - in that case the where returns -1, and right-shifting the integer "1" one position
gives you the integer "0".

2D data and Vector Processing

It is tricky to use IDL vector processing with multi-dimensional data, as it collapses the
multiple dimensions down into a big 1D array. For example:

13

ncdf_varget, fid, 'temperature', temp2D

ncdf_varget, fid, 'qc_temperature', qc_temp2D

mask=build_mask(x)

good_index=where((qc_temp2D AND mask) eq 0, ng)

returns good_index as a big 1D array of size (N*M)-nbad, assuming temp2D is dimen-
sioned as an NxM array. If you use good_index to subset temp2D, you will get a 1D array
out:

IDL> help, temp2D[good_index]

<Expression> FLOAT = Array[770400]

although you can use the index to assign data without changing the form:

IDL> temp2D[bad_index]=-9999.

IDL> help, temp2D

TEMP2D FLOAT = Array[535, 1440]

In some cases it will be best to loop over all but one index, saving the vector processing
for the �nal index. This example condenses the 2D QC data down to 1D QC, with a single
QC value for each sample time:

qc_temp_1D=replicate(0UL, n_elements(time))

for i=0, n_elements(levels)-1 do qc_temp_1D = qc_temp_1D OR qc_rh[*,i]

In this case, our 1D QC has a bit set if any value in the pro�le has that bit set.

Building A Mask in IDL from an ARM NetCDF File

IDL is surprisingly annoying to use in certain situations; the netCDF functions are bulky to
use and often require more lines than one might think. Furthermore, they are not vectorized,
so one cannot get around the inevitable looping. Nevertheless, it is possible to build a
function to read a netCDF �le that uses ARM-standard QC conventions and return a QC
mask for all "Bad" QC tests. This is an example of such a function:

FUNCTION ncdf_get_mask, fid, name, GLOBAL=global

mask=0UL

val=''

IF keyword_set(global) THEN BEGIN

inq=ncdf_inquire(fid)

natts=inq.ngatts

ENDIF ELSE BEGIN

inq=ncdf_varinq(fid,name)

natts=inq.natts

ENDELSE

14

FOR i = 0, natts-1 DO BEGIN

IF keyword_set(global) THEN BEGIN

attname=ncdf_attname(fid, /global, i)

ENDIF ELSE BEGIN

attname=ncdf_attname(fid, name, i)

ENDELSE

;; use regular expressions; could also use strmid or something

bar=stregex(attname,'bit_([0-9]+)_assessment', /subexpr, /extract)

IF (strlen(bar[1]) GT 0) THEN BEGIN

IF keyword_set(global) THEN BEGIN

ncdf_attget,fid, /global, attname, val

ENDIF ELSE BEGIN

ncdf_attget,fid, name, attname, val

ENDELSE

IF (string(val) EQ "Bad") THEN BEGIN

b=fix(bar[1])

mask=mask OR ishft(1UL,b-1)

ENDIF

ENDIF

ENDFOR

return, mask

END

An example of this function in use is:

fid=ncdf_open(file)

ncdf_varget, fid, "time", time

ncdf_varget, fid, "level", level

ncdf_varget, fid, "watervapor_rh_level", rh

ncdf_varget, fid, "qc_watervapor_rh_level", qc_rh

;; this returns a mask built from the global attributes

;; qc_bit_N_assessment

global_mask=ncdf_get_mask(fid, /global)

;; This returns a mask built from field level attributes

;; It will properly return 0 if no field level assessments

;; are given, which means we should use the global ones instead

rh_mask=ncdf_get_mask(fid, "qc_watervapor_rh_level")

;; This defaults rh_mask back to the global mask

if (rh_mask eq 0) then rh_mask=global_mask

ncdf_close, fid

15

;; RH is 2D, so collapse QC down to one value per profile

qc_rh_1D=replicate(0UL, n_elements(time))

for i=0, n_elements(levels)-1 do qc_rh_1D = qc_rh_1D OR qc_rh[*,i]

;; find profiles that do not have any bad data

gdx=where((qc_rh_1D AND mask) eq 0, ng)

;; plot good surface values of rh

if (ng gt 0) then plot, time[gdx], rh[gdx,0]

11 Other languages

The bitwise operators in most other languages (at least the ones I have looked up) tend
to follow the C syntax: & for AND, | for OR, << for left-shift, and � for NOT. This
includes perl, java, python, and ruby - although, as always, I encourage you to consult the
language's documentation for details, as there are often interesting subtleties in how things
are implemented in di�erent langauges.

Matlab has it's own bitwise functions: bitand, bitor, bitshift, and, like Fortran, the
direct functions bitset and bitget. Note that the bit position in these function is 1-o�set
rather than 0-o�set, so using bitset or bitget you should use N rather than N-1, although
you will still have to use N-1 with bitshift.

16

