Tutorial<Your Initials> Implementation Plan

VAP name: tutorial<your initals>
Sponsor: ARM
Translator: Krista Gaustad (krista.gaustad@pnnl.gov)
Developer: Your Name (your email address)

Motivation

This vap is designed to expose a new ADI developer to the typical skills needed to implement a VAP algorithm using the ADI framework.

This VAP is intended to demonstrate the following PCM capabilities to new ADI users:
· how to define an output DOD
· how to retrieve data from variables from preferred and alternative data sources
· how to retrieve companion qc variables
· how to transform a one and two dimensional variable
· using a uniform grid
· by mapping to an existing datastream’s grid
· how to assign values to ‘passthrough’ and ‘new’ variables in output datastreams
· how to convert units, data type during retrieval process

This VAP is intended to demonstrate the following ADI library functionality:
· how to document the QC associated with a transformation in either detailed or ‘rolled up’ QC
· how to get “passthrough” variable’s data from ADI’s output data structure
· how to access a retrieved variable’s name as defined in the input data source.
· how to create data for a variable in ADI’s output data structure
· how to access a variable’s attributes

Algorithm Description

These are accomplished by doing the following:
· Retrieving temperature from a hierarchy of datastreams and passing this through to an output datastream with a uniform 30s grid.
· Retrieving backscatter and transforming its time on the a uniform 30s grid and its height onto an output datastream with a uniform height interval of 10m.
· Retrieving temperature from both an ingest and vap datastream propagating them to a grid that matches that of the met.b1 input datastream
· [bookmark: _GoBack]Create a new temperature variable in the datastream using the met.b1 grid with a value equal to the highest of the ingest and vap temperature values. If they are equal then set to ingest value.
· Create a time dependent integer (i.e. flag method) source variable in the mapped met.b1 datastream that documents which of the two input sources is used for the temperature variable described in the previous bullet. (See section 7.2.10.1 of the standard 1.2 document, http://www.arm.gov/publications/programdocs/doe-sc-arm-15-004.pdf)

Sites where VAP expected to run

The VAP will run at sgpC1, sgpE13, and nsaC1

Input Datastreams/Variables

The following is provided for each variable to retrieve:
· the name provided in bold is the name the process will use to refer to the measurement (hint: this is the name that should be placed in ‘Variable Name’ colum PCM, i.e. 2nd Column in PCM).
· an indication of what ARM datastream to which to retrieve the variable (or datastreams if alternative sources are available)
· the name of the variable as found in that datastream(s)
· a description of the coordinate system onto which the variable will be transformed
· the name of that output data datastream to which the variable will be propagated,
· the units and data type into which the variable should be converted as it is retrieved, and
· an indication to retrieve the companion QC variable.
· the alignment and width of the variable in the input datastream

Note: If the input datastreams are not ARM production datastreams, the alignment and width transform parameters for input datastreams must be set in a transform configuration file. For ARM production datstreams these have been stored in the dsdb and are automatically accessed by the ADI libraries.
	
temperature
Retrieve the temperature from the preferred input datastream and transform it onto a thirty second grid.

Below is a hierarchal description of input datastreams for temperature. The name of the variable as found in each datastream is listed in parenthesis after the datastream.

data sources:
site 		datastream		name in file		alignment/width(s)
	sgp		1twrmr.c1		temp_02		start/60s
	sgp		met.b1			temp_mean		end/60s
	nsaC1		tps.b1		air_temp_mean_fahr		start/60s
	nsaC1		met.b1			temp_mean		end/60s	
	
Note:
· 1twrmr.c1 only exists at sgpC1
· met.b1 does not have a location at sgpC1 so if running at sgpC1 using sgpmetE13.b1

coordinate system:
time:
- use a 30 sec grid starting at 0 with a length of 2880
- define an alignment at the beginning of the output bins.
other:
output ds:	tutorial30s.c1
units: 		Kelvin
data type:	float
QC: 	retrieve companion qc variable but not required.

Note: If a grid is defined by mapping to an output datastream, then the “time_bound” output variable’s attribute “bound_offsets is determined by the alignment and width of the input datastream to which the data is mapped.

backscatter
Retrieve backscatter and transform its time onto the same thirty second grid as temperature and its range onto a grid with a uniform interval of 10m.

data sources :
site 		datastream		name in file		alignment/width(s)
all		ceil.b1			backscatter		end/16s	

Note: ceil.b1 does not exist for sgpE13, so if running at sgpE13 use the ceil data from sgpC1
	
coordinate system:

time:
- use a 30 sec grid starting at 0 with a length of 2880
- define an alignment at the beginning of the output bins.

range:
- map the range dimension on a grid with interval of 10 that begins at 0 and ends at 8000.
	- define alignment to middle of bin
other:
output ds:	tutorial30s.c1
units: 		1/(sr*km*10000)
data type:	float
QC: 		not required

temperature_vap
Retrieve temperature from a VAP datastream and transform it onto a grid identical to the met.b1 datastream.

data sources :
site 		datastream		name in file		alignment/width(s)
	sgp		1twrmr.c1		temp_02m		start/60s
	nsa		tps.b1			air_temp		end/60s

coordinate system:
time:
· map the variable onto the met.b1 datastream
· define alignment to end
other:
units: 		Kelvin
data type:	float
QC: 		retrieve companion qc variable but not required
output ds:	tutorial.c1 (if sample value is highest)

temperature_ingest
Retrieve temperature from an ingest datastream and transform it onto a grid identical to the met.b1 datastream.
data source :
site 		datastream		name in file		alignment/width(s)
	sgp		met.b1			temp_mean		end/60s
	nsa		met.b1			temp_mean		end/60s

Note: met.b1 does not exist for sgpC1, so if running at sgpC1 use the met.b1 data from sgpE13

coordinate system:
time:
· map the variable onto the met.b1 datastream
· define alignment to end
other:
output ds:	tutorial.c1 (if sample value is highest)
units: 		Kelvin
data type:	float
QC: 		retrieve companion qc variable but not required

Output Datastreams/Variables

The VAP produces two datastreams. The datastreams and associated variables are described below. Required variables such as dimensions, bound, lat, lon, etc, are not included in this list.

tutorial30s.c1
variable name	 	variable description
temperature	-air temperature retrieved from 1twrmr.b1, meb.b1, or tps.b1.
Var should have a companion qc variable.
backscatter	- backscatter retrieved from ceil.b1.
Var should have a companion qc variable.

tutorial.c1
variable name		variable description
temperature_vap	- temperature from vap data product (at sgp twrmr.b1 at nsa tps.b1).
Var should have a companion qc variable.
temperature _ingest	- temperature from ingest data product (at sgp and nsa met.b1).
Var should have a companion qc variable.
temperature	- the highest of the vap and ingest temperatures.
Var should have a companion source variable.

Programming Language

The VAP will be implemented using the ADI in either C, IDL, or Python

‘Tutorial<Your Initals> Implementation Plan

Sy oo
. kst s g

erier Yo hame e s
Motivation

B —ry
i A st e A1 e,

£ bowta e o e o e st s
" g
B e
ot g e e 8 o s vt
by
ot s, g e dg e prces

o AP el D By oy
oSt e G et i on s e dsid
oty
ot e s i e AT g drce
Romia e e e o s e b s e
ot S v b D it e

Jre——

e sy g b lowing
T Berermgtemprsare o eraty f s nd g -
s o s o 1
Bt o e e o o 305
s b ottt e i s orm b e o

By ——
e o sl .

