ADI Process Design
https://engineering.arm.gov/ADI_doc/algorithm.html

Development Principles

· There are typically several ways any problem can be solved, and that while none of the possible approaches are necessarily wrong, it is likely one is ‘better’ in terms of being more efficient, easier to maintain, or perhaps easier to implement.
· Recognize the algorithm you are developing is not an ADI algorithm, it is an algorithm that executes one (or more) ADI processes. It can also do anything else you program it to do.
· Before beginning to implementing your design, have another developer review the approach (Brian or Krista are good choices) so that it improvements can be made before any code is written.

Implementing Algorithms
· For a given algorithm the evaluation of command line arguments, definition of ADI process(es) and setting of their associated hooks, and the call to the function that executes the core modules and user hooks for the ADI process(es) is done in a ‘main’ routine. The name of the main routine and the function that calls the ADI modules is shown below for C, IDL, and Python
· Logic relating to ADI objects are implemented through the use of bindings functions that allow access and manipulation of the objects.
· Several function calls are typically required to get to the affected data, and to evoke the desired action on it. If a ‘action’ is frequently needed rather than repeatedly use the grouping of code, write a function for it. If other process will need the same action, implement the function in the ADI shared libraries.

	
	C
	IDL
	Python

	main routine name
	main()
	<adi_process_name>_vap
	main()

	function that invokes ADI process
	dsproc_main()
	ds.main
	dsproc.main()

Design Approach

· Break the algorithm into meaningful pieces that reflect what needs to be done to create the desired data product(s).
· Document the dependencies between each of these algorithm components (i.e. what input does each need and what is the expected output).
· Document the criteria that can be used to assess whether each component was completed correctly. This information will be used for error handling in the code.
· Where, What, and How
For each component determine in which user hook the code should be located, what ADI objects are impacted, and how they are impacted.

User Hooks (WHERE)

· init_process
· provides space for the user to perform initialization not supported by the ADI initialization module
· instantiates the user data structure, which is subsequently passed to all downstream hooks and modules
· pre_retrieval
· allows inclusion of logic that will execute before the data is retrieved for each processing interval (versus the init_process that is executed once for a given ADI process)
· post_retrieval
· provides acess to retrieved data before the individual observations that make up the current processing interval are merged (see adi_example1 for a ‘retrieval’ vap that processes the individual observations in the post_retrieval hook)
· pre_transform
· used to acess and alter data prior to the transformation
example uses:
· breaking wind direction and magnitude into u and v components (see adi_example1)
· accessing DQR’s and using this information to update variable values and QC prior to the transformation (see surfspecalb1mlawer: surfspecalb_smooth_pre_transform_hook())
· post_transform
· used to acess and alter data prior creating the output datasets
example uses:
· convert transformed u and v components back to wind direction and magnitude (see adi_example1)
· apply additional qc checks to transformed data before the output dataset is created (see surfspecalb1mlawer: surfspecalb_smooth_post_transform_hook())
· convert multiple single dimension values into one two dimensional value (see surfspecalb1mlawer: surfspecalb_transform_post_transform_hook())
· process_data
· most frequently used hook for user science algorithms
· all possible automated pre-process has been completed
· output, retrieved, and transformed datasets are all available within this hook

· finish_process
· executed after all data associated with the command line begin and end dates has been processed and stored, but prior to the execution of the ADI Finish core module
· should be used to free memory allocated for the user data structure

Dataset Descriptions and Availability (WHERE+WHAT)

· retrieved data
· dataset exists for each input datastream
· consists of all variables retrieved through the PCM and the retrieved variables associated dimensions, coordinate variables, companion qc variables (if selected in PCM retrieval table QC column), and the global attributes of each input datastream from which variables are retrieved.
· all data type and unit conversions defined in the PCM have been applied (it is not possible to access retrieved data prior to these conversions).
· the retrieved data can be either both before or after the individual observations have been merged into a single observation equal to the processing interval
· Available unmerged in the post_retriever hook, pre_transform, post_transform, and process_data hooks
· transformed
· dataset exists for each coordinate system defined in the PCM
· consists of the retrieved variables using the coordinate system and their global attributes, dimensions, coordinate variables, and companion QC variables
· data has always been merged
· available in the post_transform and process_data user hooks
· named after a coordinate system in the PCM because a coordinate system is not required to be associated with an output datastream.
· output
· dataset exists for each output datastream product produced by the algorithm
· consists of all objects defined in the output datastream’s DOD
· attributes of objects that have been assigned values in the output DOD have those same values assigned in the output dataset
· values of the output variables mapped to retrieved variables have been populated
· data has been merged and all, if any defined, transforms applied
· created by ADI module just after the post_transform user hook executes
· created by the ADI framework just after the post_transform user hook and just before the process_data user hook
· the dataset can be created in the post_retrieval hook or any hook that follows using dsproc_create_output_dataset(). Although to also map the retrieved variables to the dataset an additional call to dsproc_set_map_time_range() and dsproc_map_datasets() is needed.
· typically done to create output data for each observation rather than an period equal to the processing interval (see adi_example2)

ADI Objects (What)
· ADI objects refer to the entities which are used to store the information in the datasets and upon which algorithm actions are performed
· Objects have attributes, in some cases these attributes are also objects. For example the variable object has a attribute dimension which is itself an object.
· ADI Objects and how they are referenced in C, IDL, and Python are illustrated in the table below (think about creating table of object, object in C, object in IDL, object in Py)

	Object
	Equivalent C Data Structures
	Equivalent IDL Class
	Equivalent Python Class

	process
	N/A
	dsproc
	dsproc3

	generic object
	CDSObject
	cdsobject
	Object

	dataset
	CDSGroup
	cdsgroup
	Group

	dimension
	CDSDim
	cdsdim
	Dim

	variable
	CDSVar
	cdsvar
	Var

	attribute
	CDSAtt
	cdsatt
	Att

	userdata
	CDSUserData
	dsproc.userdata
	UserData

Actions (HOW)
Approach algorithm developing by identifying what ‘action’ needs to be done and on what ‘object’ the action needs to be invoked. The will typical narrow down the search to a particular set of functions or a class, and the ‘action’ will determine the specific function.
Examples of actions
· create / allocate memory
· access
· reset
· clone
· delete

C, IDL, and Python Libraries
· Having identified the action you want to perform and object(s) involved in what you are going to do search the appropriate documentation for functions relating to that object.
· If you feel the provided documentation for the function is not clear, or you just want to see an example, search the source code of existing vaps to see if you can find an implemented example that you can use.
Note: Before doing it you should update the code in your development area to include the latest releases of all VAP packages
· $> cd $VAP_HOME/src
· $> svn update
· If you cannot find an implemented example check the Cookbook section of the ADI web documentation (https://engineering.arm.gov/ADI_doc/cookbook.html)
· !!!!!!!!!!!!!!!IMPORTANT!!!!!!!!!!!!!!!!!!!!
If the function returns a status, or any value that can show whether the function successfully executed or encountered a problem, add error handing to your algorithm to capture this/these states.
· C Documenation (https://engineering.arm.gov/~ermold/docs/doxygen/libdsproc3/html/)
· IDL Documentation (https://engineering.arm.gov/~gaustad/idl_docs/docs/)
· Python Documentation (http://dev.arm.gov/~gaustad/python_docs/html/)

Create ADI Project

[bookmark: _GoBack](https://engineering.arm.gov/ADI_doc/pcm.html#create-adi-project)
The create_adi_project binary creates a C, IDL, or Python project comprised of a main module and user hooks for the ADI Process.

$> create_adi_project –p <PCM process name> - t <template> -o <output directory>

