AMCS USB Driver

Software User's Guide

Revision 1.03

July 2002

[image: image1.png]

ASRC Aerospace

6301 Ivy Lane, Suite 300

Greenbelt, Maryland 20770
Introduction

This document is provided to help use the software that comes with the AMCS USB card. It should be used in conjunction with the AMCS USB hardware document.

1 Installation

You should have received a .ZIP file called something like AmcsUsb_1_00.zip. The 1_00 refers to the version of the code. Take the .zip and unzip the files into an empty directory. The directory should contain these files:

	Filename
	Usage

	Driver/AmcsUsb.dll
	The AMCS card driver interface library.

	Include/AmcsUsb.h
	C include file to use with AmcsUsb.dll

	Include/AmcsUsb.lib
	Borland library file to include with your project to statically link the AmcsUsb.dll into your code.

	Driver/Ftd2xx.sys
	The FTDI USB chip driver.

	Driver/Ftd2xx.dll
	A .DLL that the AmcsUsb.dll uses.

	Driver/Ftd2xxun.exe
	Program that uninstalls the drivers.

	Driver/ASRC_Ftd2xx.inf
	Used to install drivers.

	AmcsUsbTest.exe
	Code to primitively talk to your AMCS card

The installation of the AMCS card drivers is simple. Plug in the AMCS card into your PC's USB slot. Power on the AMCS card. Windows will now autodetect the card and ask you for driver location. Point Windows to the directory where the ASRC_FTD2XX.INF file is located and you should be done.

2 Usage

The following is a code example on how to use the supplied .DLL to control the AMCS USB card. This example does the basic operations of setting up and then running a continuous data collection.

#include "AmcsUsb.h"

AMCSUSB_HANDLE Card;

AMCSUSB_REGISTER_STRUCT Regs;

int BytesRead;

unsigned short *DataBuffer;

// open the device

Card = AMCSUSB_Open(0);

if(Card == 0)

{

Warning("Couldn't open device");

return;

}

// Write your register values. This tells the driver how much data to expect

Regs = ……; // fill your values here

AMCSUSB_Write_Registers(Card, &Regs);

// allocate enough space for the data

DataBuffer = new unsigned short[AMCSUSB_DataStreamSize(Card)];

// Start data collection. Just to be safe we flush the FIFOs

AMCSUSB_Reset_FIFOs(Card);

AMCSUSB_Go(Card);

// loop until this process is stopped

// NotDone set by some outside force

while(NotDone)

{

// this routine will wait for a GOOD data packet to arrive.

ReadStatus = AMCSUSB_ReadDataStream2(Card, DataBuffer, &BytesRead);

if(ReadStatus >= 0)

{

// Got good data. Do with it what you like

StoreData(DataBuffer);

}

}

// Stop collecting data

AMCSUSB_Stop(Card);

// close the device

AMCSUSB_Close(Card);

Library

The library is a collection of "C" callable routines. The routines are in AmcsUsb.DLL. The DLL itself uses the FTDI USB driver DLL. To use this DLL you will need to link in a library file. The supplied library file (AmcsUsb.lib) is in the Borland format. The prototypes for these functions are in "AmcsUsb.h".

2.1 AMCSUSB_Open

This routine is called to attach the driver to the AMCS card. This must be called after the card is powered on and before any other routines try to talk to the card.

AMCSUSB_HANDLE AMCSUSB_Open(int UsbDeviceNumber);

UsbDeviceNumber

This parameter refers to which USB device we will return a handle for. The USB devices are numbered 0,1,2…. These are usually determined by the physical ordering on a USB hub but there is no guarantee. For multiple AMCS cards in a system it is preferable to use AMCSUSB_Open_By_Serial_Number() routine.

Return:

Returns handle to the AMCS card that is used in all the other routines. If this routine fails then 0 is returned.

2.2 AMCSUSB_Open_By_Serial_Number

This routine is called to attach the driver to the AMCS card. This must be called after the card is powered on and before any other routines try to talk to the card. Use this call when you are using more than one AMCS card. This will ensure you know what card you have just opened.

AMCSUSB_HANDLE AMCSUSB_Open_By_Serial_Number(char *SerialString);

SerialString

This parameter refers to which USB device we will return a handle for. This is a text string that matches the AMCS card's onboard serial string. Each card will have a unique serial string.

Return:

Returns handle to the AMCS card that is used in all the other routines. If this routine fails then 0 is returned.

2.3 AMCSUSB_Close

This routine is called to detach the driver from the AMCS card.

void AMCSUSB_Close(AMCSUSB_HANDLE handle);

handle

This handle returned by AMCS_Open() for this card.

2.4 AMCSUSB_Write_Registers

This routine is called to write the AMCS card's registers. This should only be called while the AMCS is not collecting data. The library tracks the register values written to the card. It does this so that it knows how big a packet to expect when data collection is started. If no call to this routine occurs the library will assume you are using the hardware default register values.

int AMCSUSB_Write_Registers(AMCSUSB_HANDLE handle, AMCSUSB_REGISTER_STRUCT *Registers);

handle

This handle returned by AMCS_Open() for this card.

Registers

Register structure filled in. See the hardware document for specifics on what each value refers to.

Return:

0 : fail

1: good

2.5 AMCSUSB_Read_Registers

This routine is called to read the AMCS card's registers. This should only be called while the AMCS is not collecting data.

int AMCSUSB_Read_Registers(AMCSUSB_HANDLE handle, AMCSUSB_REGISTER_STRUCT *Registers);

handle

This handle returned by AMCS_Open() for this card.

Registers

Register structure read back. See the hardware document for specifics on what each value refers to.

Return:

0 : fail

1: good

2.6 AMCSUSB_Default_Registers

This routine returns the AMCS card default register values. Does not talk to the AMCS card and can be called at anytime.

int AMCSUSB_Default_Registers(AMCSUSB_HANDLE handle, AMCSUSB_REGISTER_STRUCT *Registers);

handle

This handle returned by AMCS_Open() for this card.

Registers

Register structure to write to. See the hardware document for specifics on what each value refers to.

Return:

0 : fail

1: good

2.7 AMCSUSB_Samples_Per_Channel

This routine returns how many samples each channel will collect. This routine bases this number on the last register values written to the AMCS card.

int AMCSUSB_Samples_Per_Channel(AMCSUSB_HANDLE handle);

handle

This handle returned by AMCS_Open() for this card.

Return:

Number of 16-bit samples will be returned for each channel.

2.8 AMCSUSB_Number_Channels

This routine returns how many channels are being used during data collection. This routine bases this number on the last register values written to the AMCS card.

int AMCSUSB_Number_Channels(AMCSUSB_HANDLE handle);

handle

This handle returned by AMCS_Open() for this card.

Return:

Number of channels that will return data.

2.9 AMCSUSB_DataStreamSize

This routine returns the size of the data stream for each data collection. The size is the number of 16-bit integers returned. This routine bases this number on the last register values written to the AMCS card. This is the packet size that the driver looks for when it tries to acquire a data packet using the "Read Data Stream' routines.

int AMCSUSB_DataStreamSize(AMCSUSB_HANDLE handle);

handle

This handle returned by AMCS_Open() for this card.

Return:

Number of 16-bit integers returned in a data packet.

2.10 AMCSUSB_Go

This routine tells the AMCS card to start collecting data. At this point in time the AMCS card will start sending data to the drivers where it is stored. The driver only stores up to 16 Kilobytes of data so you will want to read the data from the driver at a regular basis.

Once this call is made you should not try to write or read the AMCS registers.

void AMCSUSB_Go(AMCSUSB_HANDLE handle);

handle

This handle returned by AMCS_Open() for this card.

2.11 AMCSUSB_Stop

This routine tells the AMCS card to stop collecting data.

void AMCSUSB_Stop(AMCSUSB_HANDLE handle);

handle

This handle returned by AMCS_Open() for this card.

2.12 AMCSUSB_IsRunning

This routine indicates if the card is collecting data or not. This routine only tracks if AMCSUSB_Go(), AMCSUSB_Stop(), or AMCSUSB_Reset() have been called. Any failure to get data while running may indicate a hardware problem or a software setup like an incorrect delay register value.

int AMCSUSB_IsRunning(AMCSUSB_HANDLE handle);

handle

This handle returned by AMCS_Open() for this card.

Return:

0 : not running

1 : running

2.13 AMCSUSB_Reset

This routine tells the AMCS card to reset. All registers will revert to their default values. Data collection will stop.

void AMCSUSB_Reset(AMCSUSB_HANDLE handle);

handle

This handle returned by AMCS_Open() for this card.

2.14 AMCSUSB_Reset_FIFOs

This routine tells the AMCS card to reset its FIFOs and flushes any data received from the AMCS card away. This should be called before starting data collection to ensure that the FIFOs don't have data in them from previous data collections.

void AMCSUSB_Reset_FIFOs(AMCSUSB_HANDLE handle);

handle

This handle returned by AMCS_Open() for this card.

2.15 AMCSUSB_ReadDataStream

This routine returns a data streams worth of data. No check is done on this data to ensure that the data is aligned on a packet boundary. For this reason you should use AMCS_ReadDataStream2().

int AMCSUSB_ReadDataStream(AMCSUSB_HANDLE handle, unsigned short *buffer);

handle

This handle returned by AMCS_Open() for this card.

buffer

area that the driver will write the data packet to.

The data packet will be of the size returned in AMCSUSB_DataStreamSize(). All values will be 16-bit integers. The first

Return:

Number of 16-bit integers returned in a data packet.

2.16 AMCSUSB_ReadDataStream2

This routine returns a data streams worth of data. The data is checked to ensure that the data is aligned on a packet boundary. It will toss data until a packet header is seen. This is important in because USB transfers are more affected by software loading.

The transfers will timeout after 1 second by default. The timeout can be changed by calling AMCSUSB_Set_Timeout(). Keep this in mind for longer accumulation periods.

int AMCSUSB_ReadDataStream2(AMCSUSB_HANDLE handle, unsigned short *buffer, int *BytesReturned);

handle

This handle returned by AMCS_Open() for this card.

buffer

Memory that the driver will write the data packet to.

The data packet will be of the size returned in AMCSUSB_DataStreamSize(). All values will be 16-bit integers. The first 16-bit value is a synchronization word that the AMCS card sends so the software can find the start of a packet. The rest of the data is from each active channel.

Synchronization word

Channel#1 data

Channel#2 data

Channel#3 data

Channel#4 data

BytesReturned

The number of bytes returned. Will always be as expected in good reads. It may be that in certain error conditions may return some data.

Return:

Status of this read. The following indicate all possible status values and are defined in "AmcsUsb.h".

Table 4.16.1 Status values

	Status Define Name
	Value
	

	AMCSUSB_STATUS__NO_DEVICE
	-3
	Called with bad handle value.

	AMCSUSB_STATUS__NO_HEADER_IN_DATA
	-2
	Collected a packet's worth of data but could not find a synchronization word in it.

	AMCSUSB_STATUS__TIMEOUT
	-1
	Full packet did not arrive before timeout period.

	AMCSUSB_STATUS__GOOD
	0
	Packet received with no problems.

	AMCSUSB_STATUS__GOOD_WITH_RESYNC
	1
	Packet received but had some data tossed before start of the packet.

2.17 AMCSUSB_Set_Timeout

This routine sets the timeout value used by AMCSUSB_ReadDataStream routines.

void AMCSUSB_Set_Timeout(AMCSUSB_HANDLE handle, int milliseconds);

handle

This handle returned by AMCS_Open() for this card.

milliseconds

The requested timeout in milliseconds.

2.18 AMCSUSB_DllVersion

This routine returns a string that represents the version of the .DLL. Use this to ensure that you are using the correct version of the DLL.

char * AMCSUSB_DllVersion();

Return:

Character string pointer.

2.19 AMCSUSB_BytesReceived

This routine returns the number of bytes the driver has received from the card. A bug in the driver (Version 1.03) limited this number to an upper bound of 4096 even if more data is in the buffer.

unsigned int AMCSUSB_BytesReceived(AMCSUSB_HANDLE handle);

Return:

Bytes received from card.

December 2001
AMCS Driver User's Guide
Page 1

